Updating search results...

Search Resources

6 Results

View
Selected filters:
  • arg
Antibiotic resistance genes in activated sludge vs. influent sewage
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Antibiotics are critical treatments for bacterial infections, but antibiotic resistance is a growing problem. Wastewater treatment plants may foster resistance development, since sewage contains both human pathogens and antibiotics or their metabolite. The activated sludge (AS) stage commonly used to treat sewage at these plants is especially microbe-rich and may encourage transfer of antibiotic resistance genes (ARGs) through reproduction (vertical transfer) or movement of mobile genetic elements (horizontal transfer). To learn more, a recent study profiled ARGs and their neighboring genes at five wastewater treatment plants on three continents. Overall, ARG abundance was lower in AS than in incoming sewage (IN). In addition, ARGs tended to colocalize with plasmids and other mobile genetic elements to a greater extent in IN than AS, indicating decreased horizontal transfer potential..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022
Antimicrobial resistance in the gut microbiome of pigs: an extensive metagenomic analysis
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Antimicrobials are commonly used in agriculture and are important for animal health. This use drives most of the antimicrobial use globally and has led to an increase in antimicrobial resistance (AMR), including resistance to antimicrobials that are critical in human medicine. Researchers recently examined the AMR profiles of over 400 pigs, including wild boars, Tibetan pigs, and commercial pigs, under multiple rearing modes. They identified over a thousand potential antimicrobial resistance gene (ARG) sequences that belonged to 69 different drug resistance classes. From this dataset a few patterns emerged. Tetracycline resistance was the most enriched, but aminoglycoside resistance had the most unique ARGs. Farm-reared pigs had higher AMR levels than semi-free-range pigs or wild boars..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022
Genomics and epidemiology of multidrug resistance in wastewater treatment plant bacteria
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Multidrug-resistant bacteria are a threat to both human and animal health worldwide. Bacteria often gain resistance to drugs by collecting antibiotic resistance genes (ARGs) from other bacteria. One potential hotbed for this exchange is wastewater treatment plants (WWTPs), where environmental bacteria co-mingle with human/animal-associated bacteria. Unfortunately, little is known about the epidemiology of multidrug-resistant bacteria in WWTPs. To close this gap, researchers isolated 82 multidrug-resistant bacterial strains from WWTPs and compared their genomes to bacterial genomes found in public databases. Most multidrug-resistant bacteria were not closely related to human/animal-associated bacteria, and those that were closely related had distinct plasmid profiles compared to relatives. Plasmids, as opposed to chromosomes, were also the main carriers of ARGs..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/17/2022
Human activities influence antibiotic resistance in the environment through a mobile resistome
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Antibiotic-resistant bacterial infections have become a public health crisis. Their incidence has increased in the past decades, driven by the acquisition of antibiotic resistance genes (ARGs), but how these ARGs are acquired by bacteria in the environment is not completely known. Human interaction with the environment can spread resistant bacteria, further influencing the antibiotic resistance properties of environmental microbes. In a new study, researchers sought to characterize how human activities influence the environmental “resistome.” They surveyed the microbiome, resistome, and mobilome of planktonic microbial communities in the Han River. The study was extensive, with samples spanning the length of the river over three seasons. Using integrative metagenomic analyses, they found that fecal contamination from humans influenced the resistome in densely populated areas of the river, but interestingly, fecal bacteria weren’t the main factor influencing the ARG increase..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/27/2020
Microbiota therapeutic RBX2660 shows promising results in patients with recurrent Clostridioides difficile infection
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Fecal microbiota transplantation is a promising procedure for preventing recurrent Clostridioides difficile infection (rCDI), which is the most frequently identified healthcare-associated infection in the US. Unfortunately, the effects of microbiota transplantations on the microbiome and resistome of rCDI patients have not been examined in detail. To address that gap, researchers recently conducted a randomized, double-blind, placebo-controlled clinical trial of the investigational microbiota therapeutic RBX2660 for patients with rCDI. Over the first 7 days after treatment, all patients showed significant recovery of gut microbiome architecture and a decreased abundance of antibiotic-resistance genes. However, patients receiving RBX2660 showed more significant and longer-lasting microbiome and resistome shifts toward a balanced configuration than those receiving the placebo..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/12/2020
Understanding how the Anthropocene threatens plant microbiomes
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Behind every plant is a community of microbes that support its growth, development, and evolution. Currently, these communities are in danger. Overpopulation, overconsumption, and intensive agriculture are seriously altering the plant microbiome. Signature changes include community imbalance and loss of resilience among plant microbes, and increased resistance to antibiotics, which could result in the emergence of new plant as well as human pathogens. Curbing these effects will require increased effort among microbiome scientists to understand the drivers of systemic shifts and among citizens to acknowledge and reduce their footprint on the planet..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/18/2022