Updating search results...

Search Resources

1779 Results

View
Selected filters:
Fundamentals of Atmospheric Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Do you want to know more about atmospheric science? This course is designed to give both Meteorology and non-Meteorology students a comprehensive understanding of atmospheric science and the quantitative analytical tools to apply atmospheric science to their own disciplines. Students are introduced to fundamental concepts and applications of atmospheric thermodynamics, radiative transfer, atmospheric chemistry, cloud microphysics, atmospheric dynamics, and the atmospheric boundary layer. These topics are covered broadly but in enough depth to introduce students to the methods atmospheric scientists use to describe and predict atmospheric phenomena. The course is designed to be taken by sophomore meteorology students as well as by students in related disciplines who have an adequate mathematical and physical background.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Bill Brune
Date Added:
10/07/2019
Atmospheric Processes
Read the Fine Print
Rating
0.0 stars

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

Subject:
Physical Science
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Climate Placemat: Energy-Climate Nexus
US Department of Energy
US Department of Energy Office of Science
Date Added:
10/27/2014
Stacking up the Atmosphere
Unrestricted Use
CC BY
Rating
0.0 stars

In this hands-on activity, participants learn the characteristics of the five layers of the atmosphere and make illustrations to represent them. They roll the drawings and place them in clear plastic cylinders, and then stack the cylinders to make a model column of the atmosphere.

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
ANDRILL- University of Nebraska
Betsy Youngman
Jean Pennycook
Louise Huffman
LuAnn Dahlman
Date Added:
06/19/2012
Using Satellite Images to Understand Earth's Atmosphere
Unrestricted Use
CC BY
Rating
0.0 stars

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.

Subject:
Atmospheric Science
Career and Technical Education
Environmental Studies
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Earth Exploration Toolbook, TERC
Todd Ensign
et. al.
Date Added:
06/19/2012
Volcanic Clouds and the Atmosphere
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Atmospheric scientists use computer models to forecast the position of a moving volcanic cloud, and remote sensing can identify its components, including gases and aerosols. This resource provides ideas for classroom investigation of these topics, and directions for a demonstration of light scattering by aerosols. The lesson ideas are from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.

Subject:
Atmospheric Science
Geoscience
Physical Science
Material Type:
Simulation
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
The Modern Atmospheric C02 Record
Unrestricted Use
CC BY
Rating
0.0 stars

In this activity, students compare carbon dioxide data from Mauna Loa Observatory, Barrow, Alaska, and the South Pole over the past 40 years. Students use the data to learn about what causes short-term and long-term changes in atmospheric carbon dioxide. This activity makes extensive use of Excel.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Clark College
Robert McCay
Starting Point Collection, SERC
Date Added:
06/19/2012
Weather and Atmosphere
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students learn the basics about weather and the atmosphere. They investigate materials engineering as it applies to weather and the choices available to us for clothing to counteract the effects of weather. Students have the opportunity to design and analyze combinations of materials for use in specific weather conditions. In the next lesson, students also are introduced to air masses and weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space. Then, students learn the distinguishing features of the four main types of weather fronts that accompany high and low pressure air masses and how those fronts are depicted on a weather map. During this specific lesson, students learn different ways that engineers help with storm prediction, analysis and protection. In the final lesson, students consider how weather forecasting plays an important part in their daily lives by learning about the history of weather forecasting and how improvements in weather technology have saved lives by providing advance warning of natural disasters.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
CO2 & the Atmosphere
Read the Fine Print
Rating
0.0 stars

This video is narrated by climate scientist Richard Alley. It examines studies US Air Force conducted over 50 years ago on the warming effects of CO2 in the atmosphere and how that could impact missile warfare. The video then focuses on the Franz Josef glacier in New Zealand; the glacier is used to demonstrate a glacier's formation, depth of snow fall in the past, and understand atmospheric gases and composition during the last Ice Age. Supplemental resources are available through the website.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Earth: The Operators' Manual
Geoff Haines-Stiles Productions
Date Added:
09/24/2018
A Flipped-Class Atmospheric Science Curriculum for Middle School Educators
Unrestricted Use
CC BY
Rating
0.0 stars

Members of the Department of Atmospheric Sciences at the University of Illinois Urbana-Champaign have designed a suite of atmospheric science learning modules for middle school students. The curriculum, which implements a flipped-classroom model, is cross-referenced with Common Core and Next Generation Science Standards. It introduces students to topics such as temperature, pressure, severe weather safety, climate change, and air pollution through short instructional videos and critical thinking activities. A goal of this project is to provide middle school science educators with resources to teach while fostering early development of math and science literacy. The work is funded by a National Science Foundation CAREER award. For a complete list of learning modules and to learn more about the curriculum, visit https://www.atmos.illinois.edu/~nriemer/education.html

Subject:
Physical Science
Material Type:
Lesson Plan
Module
Provider:
University of Illinois
Provider Set:
University of Illinois Department of Atmospheric Science
Author:
Dr. Nicole Riemer
Eric Snodgrass
Tyra Brown
Date Added:
08/01/2016
Atmospheric and Ocean Circulations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Survey of atmospheric and oceanic phenomena including the discussion of observations and theoretical interpretations. Topics covered include: monsoons; El Nino; planetary waves; atmospheric synoptic eddies and fronts; gulf stream rings; hurricanes; surface and internal gravity waves; and tides. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
R. Alan Plumb
Date Added:
01/01/2004
Atmospheric Radiation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subject:
Atmospheric Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
McClatchey, Robert
Seager, Sara
Date Added:
09/01/2008
Atmospheric Radiation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subject:
Atmospheric Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
McClatchey, Robert
Prinn, Ronald
Date Added:
09/01/2006
A Little Atmosphere
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The earth’s atmosphere may seem thick when compared to something like your height—but it’s surprisingly thin when compared to the earth’s radius. Here, you can find out exactly how thin, using strips of plastic to model the correctly scaled thickness of the atmosphere on a globe.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
04/03/2019
Dynamics of the Atmosphere
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.

Subject:
Applied Science
Atmospheric Science
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lindzen, Richard
Date Added:
02/01/2008
Atmospheric Oxygen
Read the Fine Print
Educational Use
Rating
0.0 stars

In this feature, adapted from Interactive NOVA: "Earth," students explore the relationship between oxygen concentration and the well-being of various organisms by simulating a change in oxygen levels and observing what happens.

Subject:
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
09/26/2003
Vertical Height of the Atmosphere
Read the Fine Print
Rating
0.0 stars

This is a lesson about the vertical dimension of the atmosphere and includes four activities. Activity 1 Introduces concepts related to distance, including length and height and units of measurement. Students are asked to make comparisons of distances. In activity 2, students learn about the vertical profile of the atmosphere. They work with a graph and plot the heights of objects and the layers of the atmosphere: troposphere, stratosphere, mesosphere, thermosphere, and exosphere. In activity 3, students learn about other forms of visual displays using satellite imagery. They compare images of the same weather feature, a hurricane, using two different images from MODIS and CALIPSO. One image is looking down on the hurricane from space, the other looks through the hurricane to display a profile of the hurricane. Activity 4 reinforces the concept of the vertical nature of the atmosphere. Students will take a CALIPSO satellite image that shows a profile of the atmosphere and use this information to plot mountains and clouds on their own graph of the atmosphere. The recommended order for the activities is to complete the first two activities on day one, and the second two activities on day two. Each day will require approximately 1 to 1.5 hours.

Subject:
Applied Science
Atmospheric Science
Engineering
Geoscience
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Atmospheric Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth's atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kroll, Jesse
Date Added:
09/01/2013
Ocean and Climate: Physical Coupling with the Atmosphere
Unrestricted Use
Public Domain
Rating
0.0 stars

This page is part of NASA's Earth Observatory website. It features text and a scientific illustration to describe how the ocean interacts with the atmosphere, physically exchanging heat, water, and momentum. It also includes links to related data sets, other ocean fact sheets, and relevant satellite missions.

Subject:
Atmospheric Science
Physical Science
Material Type:
Reading
Provider:
NASA
Provider Set:
Earth Observatory
Author:
Yoram Kaufman
Date Added:
02/16/2011
Atmospheric Processes and Phenomenon
Rating
0.0 stars

This textbook serves as an introduction to atmospheric science for undergraduate students and is the primary textbook for the ATMO 200: Atmospheric Processes and Phenomenon course at the University of Hawai’i at Mānoa. The book covers basic atmospheric science, weather, and climate in a descriptive and quantitative way.

Subject:
Atmospheric Science
Physical Science
Material Type:
Textbook
Author:
Alison Nugent
Christina Karamperidou
David Decou
Shintaro Russell
Date Added:
04/14/2022