Updating search results...

Search Resources

34 Results

View
Selected filters:
  • teachers-as-makers
  • design-challenge
Acids and Bases: Making a Film Canister Rocket
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, two cast members demonstrate what happens when vinegar is added to baking soda inside a container. The resulting chemical reaction produces enough carbon dioxide to launch their paper rocket skyward.
Recommended for: Grades K-5

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Air Power: Making a Hovercraft
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, cast members make their own hovercraft and demonstrate how the air leaking out of a balloon can make a plastic plate hover above a table.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Bio-Blocks - A Fish Habitat STEM Design Challenge
Unrestricted Use
Public Domain
Rating
0.0 stars

Global populations have for decades migrated more and more to coastal regions. This colonization of the coast has resulted in large areas of what was formerly rocky shores, salt marshes, and mudflats becoming built environment for people. What’s more, as sea levels rise more, coastal defenses are being put in place to protect towns and cities from the oceans. These coastal defenses are also replacing natural habitats that play a vital role in the life cycle of fish, including spawning locations, nurseries, and sources of planktonic food. This, in turn, is affecting the fish stocks in the oceans.  During this lesson, students will gain a basic understanding of the idea that specific habitats are essential in the lifecycle of some species. Students will work through the engineering design process to build a ‘bio-block’ solution to make sea walls a more nature-friendly solution for flood protection.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Date Added:
04/01/2020
Building Simple Machines: A Glass of Milk, Please
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, the cast shows how the 34 steps in their Rube Goldberg invention use everything from gravity to carbon dioxide gas in order to accomplish one simple task: pouring a glass of milk.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Building Simple Machines: Plant Quencher
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from ZOOM, Jillian explains how her simple machine uses marbles, levers, flowing sand, and a spinning wheel to water a plant.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Creative Engineering Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the world of creative engineering product design. Through six activities, teams work through the steps of the engineering design process (or loop) by completing an actual design challenge presented in six steps. The project challenge is left up to the teacher or class to determine; it might be one decided by the teacher, brainstormed with the class, or the example provided (to design a prosthetic arm that can perform a mechanical function). As students begin by defining the problem, they learn to recognize the need, identify a target population, relate to the project, and identify its requirements and constraints. Then they conduct research, brainstorm alternative solutions, evaluate possible solutions, create and test prototypes, and consider issues for manufacturing. See the Unit Schedule section for a list of example design project topics.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
See individual activities.
Date Added:
09/18/2014
Design Step 2: Research the Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

Through Internet research, patent research, standards and codes research, user interviews (if possible) and other techniques (idea web, reverse engineering), students further develop the context for their design challenge. In subsequent activities, the design teams use this body of knowledge about the problem to generate product design ideas. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function]. This activity is Step 2 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 3: Brainstorm Possible Solutions
Read the Fine Print
Educational Use
Rating
0.0 stars

Brainstorming is a team creativity activity that helps generate a large number of potential solutions to a problem. In this activity, students participate in a group brainstorming activity to generate possible solutions to their engineering design challenge. Students learn brainstorming guidelines and practice within their teams to create a poster of ideas. The posters are used in a large group critiquing activity that ultimately helps student teams create a design project outline. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 3 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 4: Engineering Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

Engineering analysis distinguishes true engineering design from "tinkering." In this activity, students are guided through an example engineering analysis scenario for a scooter. Then they perform a similar analysis on the design solutions they brainstormed in the previous activity in this unit. At activity conclusion, students should be able to defend one most-promising possible solution to their design challenge. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 4 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 5: Construct a Prototype
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 6: Evaluate/Manufacture a Final Product
Read the Fine Print
Educational Use
Rating
0.0 stars

As students learn more about the manufacturing process, they use the final prototypes created in the previous activity to evaluate, design and manufacture final products. Teams work with more advanced materials and tools, such as plywood, Plexiglas, metals, epoxies, welding materials and machining tools. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 6 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Engineering Design Challenges
Unrestricted Use
Public Domain
Rating
0.0 stars

This site presents challenges faced by NASA engineers who are developing the next generation of aerospace vehicles. The challenges: thermal protection systems, spacecraft structures, electrodynamic propulsion systems, propellers, and personal satellite assistants. Students design, build, test, re-design, and re-build models that meet specified design criteria, using the same analytical skills as engineers.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
NASA
Provider Set:
NASA Marshall Space Flight Center
Date Added:
08/05/2004
Green Design Challenge Activity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Green Design Challenge is to brainstorm, prototype and present a design idea for a social entrepreneurship project focusing on green design that meets the design principles. Photo examples from ISKME's Teacher Innovation Workshop are included.

Subject:
Arts and Humanities
Material Type:
Activity/Lab
Provider:
ISKME
Provider Set:
ISKME
Date Added:
02/16/2011
How to Design a Better Smartphone Case
Read the Fine Print
Educational Use
Rating
0.0 stars

Engineers create and use new materials, as well as new combinations of existing materials to design innovative new products and technologies—all based upon the chemical and physical properties of given substances. In this activity, students act as materials engineers as they learn about and use chemical and physical properties including tessellated geometric designs and shape to build better smartphone cases. Guided by the steps of the engineering design process, they analyze various materials and substances for their properties, design/test/improve a prototype model, and create a dot plot of their prototype testing results.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Courtney Phelps
Jill Weaver
Maggie Demarse
Marjorie Langston
Date Added:
11/28/2018
ISKME & KQED Connected Educator Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In conjunction with Connected Educator Month throughout October, 2014 ISKME and KQED are launching the Connected Educator Challenge, an opportunity for Connected Educators to share what they are currently doing in their work and envision the future of what being a Connected Educator will look like. Connected Educators are invited to make and share media in response to the prompt below:

Show us your vision for your future as a Connected Educator. Where do you hope to be in the future as a Connected Educator? What will your learning environment look like? How will your students be connected? What kinds of activity will you and your students be engaged in? How will you and your students meet the challenge of an increasingly interconnected world?
Show us your vision for the future as a Connected Educator. Where do you hope to be in the future as a Connected Educator?

Subject:
Arts and Humanities
Business and Communication
Mathematics
Social Science
Material Type:
Activity/Lab
Date Added:
10/06/2014
ISKME's Design Lab 2012: Make an OER - Remix
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Participants collaborate in ISKME's OER Design Lab at Maker Faire to brainstorm, prototype, and present new ideas for teaching and learning. Each participant creates an Open Educational Resource (OER) that will be shared on OER Commons and with teachers during the Maker Faire follow up Teachers as Makers Academy.

Subject:
Education
Material Type:
Activity/Lab
Date Added:
05/21/2012
ISKME's Design Lab at Maker Faire 2010
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Maker Faire participants collaborate in ISKME's Design Lab, using digital stories and salvaged materials to design an innovative school of the future. The Design Lab features Makers Mauro ffortisimo Di Nucci's deconstructed piano and INKA Biospheric Systems' Vertical Garden; as well as Student and Teacher project examples that integrate art, science, sustainability, and green design inspire the creation of shareable open-source learning resources. This wiki page showcases photos and video from the Design Lab, open educational resources for teachers, and a step by step guide through the design process.

Subject:
Education
Material Type:
Activity/Lab
Provider:
ISKME
Provider Set:
ISKME
Date Added:
02/16/2011
ISKME's Teachers as Makers Academy 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Activities, resources, photos and videos from ISKME's two day professional development teacher training that explores Open Educational Resources (OER) and Maker-Teacher collaborations to facilitate innovation in the classroom. The Makers’ projects are points of inspiration for Teachers while they engage in design-thinking activities to create, remix, and share OER Projects with online collaborative tools.

Subject:
Arts and Humanities
Mathematics
Material Type:
Activity/Lab
Teaching/Learning Strategy
Date Added:
06/25/2012