Updating search results...

Search Resources

21 Results

View
Selected filters:
  • photons
Beer's Law Lab
Unrestricted Use
CC BY
Rating
0.0 stars

The PhET project at the University of Colorado creates "fun, interactive, research-based simulations of physical phenomena." This particular one deals with Beer's Law. "The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer! The simulation is also paired with a teachers' guide and related resources from PhET. The simulation is also available in multiple languages.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
05/14/2012
Color Vision
Unrestricted Use
CC BY
Rating
0.0 stars

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white light. View the light as a solid beam, or see the individual photons.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
10/30/2006
Introduction to Nuclear and Particle Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an introductory graduate-level course on the phenomenology and experimental foundations of nuclear and particle physics, including the fundamental forces and particles, as well as composites. Emphasis is on the experimental establishment of the leading models, and the theoretical tools and experimental apparatus used to establish them.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Klute, Markus
Date Added:
09/01/2020
Light and the Law of Reflection
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from Shedding Light on Science demonstrates the law of reflection by showing how light energy is reflected off both smooth and rough surfaces at predictable angles.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
08/09/2007
Models of the Hydrogen Atom
Unrestricted Use
CC BY
Rating
0.0 stars

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Michael Dubson
Mindy Gratny
Sam McKagan
Wendy Adams
Date Added:
01/01/2007
Molecules and Light
Unrestricted Use
CC BY
Rating
0.0 stars

Do you ever wonder how a greenhouse gas affects the climate, or why the ozone layer is important? Use the sim to explore how light interacts with molecules in our atmosphere.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Kathy Perkins
Kelly Lancaster
Robert Parson
Trish Loeblein
Date Added:
10/01/2010
Multiwavelength Astronomy: Gamma Ray Science
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Dieter Hartmann, a high-energy physicist, presents a story-based lesson on the science of Gamma-Ray astronomy. The lesson focuses on gamma-ray bursts; examining their sources, types, and links to the origin and evolution of the Universe. The story-based format of the lesson also provides insights into the nature of science. Students answer questions based on the reading guide. A list of supplemental websites is also included.

Subject:
History
History, Law, Politics
Physical Science
Physics
Space Science
Material Type:
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Neon Lights & Other Discharge Lamps
Unrestricted Use
CC BY
Rating
0.0 stars

Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/13/2006
Photoelectric Effect
Unrestricted Use
CC BY
Rating
0.0 stars

See how light knocks electrons off a metal target, and recreate the experiment that spawned the field of quantum mechanics.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/10/2006
Photoelectric Effect (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

See how light knocks electrons off a metal target, and recreate the experiment that spawned the field of quantum mechanics.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
08/02/2009
Photoelectric effect
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explaining the photoelectric effect using wave-particle duality, the work function of a metal, and how to calculate the velocity of a photoelectron. Created by Jay.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
James Luer
Date Added:
06/25/2014
Quantum Physics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the first course in the undergraduate Quantum Physics sequence. It introduces the basic features of quantum mechanics. It covers the experimental basis of quantum physics, introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions. The lectures and lecture notes for this course form the basis of Zwiebach’s textbook Mastering Quantum Mechanics published by MIT Press in April 2022.
This presentation of 8.04 by Barton Zwiebach (2016) differs somewhat and complements nicely the presentation of Allan Adams (2013). Adams covers a larger set of ideas; Zwiebach tends to go deeper into a smaller set of ideas, offering a systematic and detailed treatment. Adams begins with the subtleties of superpostion, while Zwiebach discusses the surprises of interaction-free measurements. While both courses overlap over a sizable amount of standard material, Adams discussed applications to condensed matter physics, while Zwiebach focused on scattering and resonances. The different perspectives of the instructors make the problem sets in the two courses rather different.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Zwiebach, Barton
Date Added:
02/01/2016
Quantum Physics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the experimental basis of quantum physics. It introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions.
It is the first course in the undergraduate Quantum Physics sequence, followed by 8.05 Quantum Physics II and 8.06 Quantum Physics III.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Adams, Allan
Evans, Matthew
Zwiebach, Barton
Date Added:
02/01/2013
Quantum Wave Interference
Unrestricted Use
CC BY
Rating
0.0 stars

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to explore how measurements change the waves and the patterns they produce on the screen.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam McKagan
Sam Reid
Wendy Adams
Date Added:
09/09/2006
Semiconductor Optoelectronics: Theory and Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ram, Rajeev
Date Added:
09/01/2002