Updating search results...

Search Resources

11 Results

View
Selected filters:
  • mechanical
Bio Inspired Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course Bio-Inspired Design gives an overview of non-conventional mechanical approaches in nature and shows how this knowledge can lead to more creativity in mechanical design and to better (simpler, smaller, more robust) solutions than with conventional technology. The course discusses a large number of biological organisms with smart constructions, unusual mechanisms or clever sensing and processing methods and presents a number of technical examples and designs of bio-inspired instruments and machines.

Subject:
Applied Science
Architecture and Design
Material Type:
Homework/Assignment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. P. Breedveld
Date Added:
10/09/2014
Cardboard Automata
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Cardboard Automata are a playful way to explore simple machine elements while creating a mechanical sculpture. This activity was inspired by the Cabaret Mechanical Theatre, a group of automata builders based in England. Artists like Paul Spooner, Keith Newstead, and Carlos Zapata build beautiful narrative pieces using elegant mechanisms based on cams, gears, springs, and linkages. Working with simple materials, this activity is easy to get started, and may become as complex as your mechanical sculpture ideas.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
National Science Foundation
The Exploratorium
Date Added:
12/01/2012
Energy Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

Students evaluate various everyday energy conversion devices and draw block flow diagrams to show the forms and states of energy into and out of the device. They also identify the forms of energy that are useful and the desired output of the device as well as the forms that are not useful for the intended use of the item. This can be used to lead into the law of conservation of energy and efficiency. The student activity is preceded by a demonstration of a more complicated system to convert chemical energy to heat energy to mechanical energy. Drawing the block energy conversion diagram for this system models the activity that the students then do themselves for other simpler systems.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Clarkson University
Author:
Jan DeWaters
Susan Powers
Date Added:
08/11/2009
Energy Forms, States and Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Forms and States Demonstrations
Read the Fine Print
Educational Use
Rating
0.0 stars

Demonstrations explain the concepts of energy forms (sound, chemical, radiant [light], electrical, atomic [nuclear], mechanical, thermal [heat]) and states (potential, kinetic).

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Kinetic and Potential Energy of Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to both potential energy and kinetic energy as forms of mechanical energy. A hands-on activity demonstrates how potential energy can change into kinetic energy by swinging a pendulum, illustrating the concept of conservation of energy. Students calculate the potential energy of the pendulum and predict how fast it will travel knowing that the potential energy will convert into kinetic energy. They verify their predictions by measuring the speed of the pendulum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Materials at Equilibrium (SMA 5111)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Material covered in this course includes the following topics:

Laws of thermodynamics: general formulation and applications to mechanical, electromagnetic and electrochemical systems, solutions, and phase diagrams
Computation of phase diagrams
Statistical thermodynamics and relation between microscopic and macroscopic properties, including ensembles, gases, crystal lattices, phase transitions
Applications to phase stability and properties of mixtures
Computational modeling
Interfaces

This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5111 (Materials at Equilibrium).

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ceder, Gerbrand
Van der Ven, Anton
Date Added:
09/01/2003
Mobile Autonomous Systems Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

MASLab (Mobile Autonomous System Laboratory), also known as 6.186, is a robotics contest. The contest takes place during MIT's Independent Activities Period and participants earn 6 units of P/F credit and 6 Engineering Design Points. Teams of three to four students have less than a month to build and program sophisticated robots which must explore an unknown playing field and perform a series of tasks.
MASLab provides a significantly more difficult robotics problem than many other university-level robotics contests. Although students know the general size, shape, and color of the floors and walls, the students do not know the exact layout of the playing field. In addition, MASLab robots are completely autonomous, or in other words, the robots operate, calculate, and plan without human intervention. Finally, MASLab is one of the few robotics contests in the country to use a vision based robotics problem.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kaelbling, Leslie
None, No Faculty
Date Added:
01/01/2005
Modeling Dynamics and Control I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dubowsky, Steven
Trumper, David
Date Added:
02/01/2005
Polymer Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Thomas, Edwin
Date Added:
02/01/2007
Work and Power: Waterwheel
Read the Fine Print
Educational Use
Rating
0.0 stars

Investigating a waterwheel illustrates to students the physical properties of energy. They learn that the concept of work, force acting over a distance, differs from power, which is defined as force acting over a distance over some period of time. Students create a model waterwheel and use it to calculate the amount of power produced and work done.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014