Keywords: Hilbert (10)

save
save to

Please log in to save materials.

selected filters:
Cauchy-Schwarz Inequality

Cauchy-Schwarz Inequality

This module defines the Cauchy-Schwarz Inequality and discusses some of its practical ... (more)

This module defines the Cauchy-Schwarz Inequality and discusses some of its practical usefulness, especially in the Matched filter detector. Also, we will prove the CSI for real vector spaces. (less)

Subject:
Mathematics and Statistics
Science and Technology
Material Type:
Readings
Syllabi
Collection:
Connexions
Provider:
Rice University
Author:
Justin Romberg
Michael Haag
No Strings Attached
Desigualdad de Cauchy-Schwarz

Desigualdad de Cauchy-Schwarz

Este modulo define la desigualdad de Cauchy-Schwarz y discute algunos de sus ... (more)

Este modulo define la desigualdad de Cauchy-Schwarz y discute algunos de sus usos prácticos, especialmente en el detector de filtro acoplado. También, provaremos la desigualdad de CS para espacios vectoriales reales. (less)

Subject:
Science and Technology
Material Type:
Readings
Syllabi
Collection:
Connexions
Provider:
Rice University
Author:
Justin Romberg
Michael Haag
No Strings Attached
Expansión de Bases Ortonormales

Expansión de Bases Ortonormales

El modulo se ve como la descomposición de señales por medio de ... (more)

El modulo se ve como la descomposición de señales por medio de la expansión de bases ortonormales para proveer una representación alternativa. El modulo presenta varios ejemplos para resolver los problemas y vistos en diferentes tipos de espacios y dimensiones. (less)

Subject:
Mathematics and Statistics
Science and Technology
Material Type:
Readings
Syllabi
Collection:
Connexions
Provider:
Rice University
Author:
Justin Romberg
Michael Haag
No Strings Attached
Orthonormal Basis Expansions

Orthonormal Basis Expansions

The module looks at decomposing signals through orthonormal basis expansion to provide ... (more)

The module looks at decomposing signals through orthonormal basis expansion to provide an alternative representation. The module presents many examples of solving these problems and looks at them in several spaces and dimensions. (less)

Subject:
Mathematics and Statistics
Science and Technology
Material Type:
Readings
Syllabi
Collection:
Connexions
Provider:
Rice University
Author:
Justin Romberg
Michael Haag
No Strings Attached
2002 llaF ,gnivloS melborP gnireenignE dna sretupmoC ot noitcudortnI

2002 llaF ,gnivloS melborP gnireenignE dna sretupmoC ot noitcudortnI

.desu si egaugnal gnimmargorp avaJ ehT .gninnalp dna ,tnemeganam ,ecneics ,gnireenigne ni ... (more)

.desu si egaugnal gnimmargorp avaJ ehT .gninnalp dna ,tnemeganam ,ecneics ,gnireenigne ni smelborp gnivlos rof seuqinhcet gnipoleved no si sisahpmE .scipot decnavda detceles dna scihparg retupmoc ,gnihcraes dna gnitros ,serutcurts atad ,sdohtem laciremun ,secafretni resu lacihparg ,stpecnoc gnimmargorp revoc smelborp gnimmargorp ylkeeW .esruoc eht fo sucof eht si tnempoleved dna ngised erawtfos detneiro-tcejbO .snoitacilppa cifitneics dna gnireenigne rof sdohtem lanoitatupmoc dna tnempoleved erawtfos latnemadnuf stneserp esruoc sihT (less)

Subject:
Science and Technology
Material Type:
Assessments
Full Course
Homework and Assignments
Lecture Notes
Syllabi
Collection:
MIT OpenCourseWare
Provider:
M.I.T.
Author:
George Kocur
Remix and Share