Updating search results...

Search Resources

23 Results

View
Selected filters:
  • electric-field
Atomic and Optical Physics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the first of a two-semester subject sequence that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include the interaction of radiation with atoms: resonance; absorption, stimulated and spontaneous emission; methods of resonance, dressed atom formalism, masers and lasers, cavity quantum electrodynamics; structure of simple atoms, behavior in very strong fields; fundamental tests: time reversal, parity violations, Bell's inequalities; and experimental methods.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ketterle, Wolfgang
Date Added:
02/01/2014
Both Fields at Once?!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Electric Field Hockey
Unrestricted Use
CC BY
Rating
0.0 stars

Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
10/31/2006
Electric Field Hockey (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Sam Reid
Wendy Adams
Date Added:
07/02/2008
Electric Field of Dreams
Unrestricted Use
CC BY
Rating
0.0 stars

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude. (Kevin Costner not included).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/16/2007
Electric field definition
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David explains why physicists came up with the idea of the electric field, how it's useful, and explains how the electric field is defined. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
06/01/2021
Electric field direction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The direction of an electrical field at a point is the same as the direction of the electrical force acting on a positive test charge at that point. For example if you place a positive test charge in an electric field and the charge moves to the right you know the direction of the electric field in that region points to the right. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
06/01/2021
The Energy of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cooper
Mandek Richardson
Patricio Rocha
Tapas K. Das
Date Added:
09/18/2014
How Electrons Move
Read the Fine Print
Rating
0.0 stars

Being able to control the movement of electrons is fundamental for making all electronic devices work. Discover how electric and magnetic fields can be used to move electrons around. Begin by exploring the relationship between electric forces and charges with vectors. Then, learn about electron fields. Finally, test your knowledge in a fun "Electron Shooting" game!

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Magnitude of electric field created by a charge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David explains how to find the magnitude of the electric field created by a point charge and solves a few examples problems to find the electric field from point charges. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
06/01/2021
Microwaves
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
11/15/2007
Microwaves (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
07/01/2004
Molecule Polarity
Unrestricted Use
CC BY
Rating
0.0 stars

Students will predict bond polarity using electron negativity values; indicate polarity with a polar arrow or partial charges; rank bonds in order of polarity; and predict molecular polarity using bond polarity and molecular shape.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Robert Parson
Date Added:
09/27/2011
Net electric field from multiple charges in 1D
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David solves an example problem to find the net electric field created by multiple charges at a point in between them. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
06/01/2021
Physics II: Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory.
Acknowledgments
Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Physics Department affiliated with course 8.022. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sciolla, Gabriella
Date Added:
09/01/2004
Piezoelectric One-Way Remote
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners construct a device out of a piezoelectric igniter, like those used as barbecue lighters. Learners use the device to remotely start current flowing in a simple series circuit containing a small electric fan.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
The Exploratorium
Date Added:
10/31/2004
Radiating Charge
Unrestricted Use
CC BY
Rating
0.0 stars

The electric field lines from a point charge evolve in time as the charge moves. Watch radiation propagate outward at the speed of light as you wiggle the charge. Stop a moving charge to see bremsstrahlung (braking) radiation. Explore the radiation patterns as the charge moves with sinusoidal, circular, or linear motion. You can move the charge any way you like, as long as you don���������t exceed the speed of light.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Michael Dubson
Date Added:
02/01/2013