Updating search results...

Search Resources

13 Results

View
Selected filters:
  • detection
Biosensors for Food Safety
Read the Fine Print
Educational Use
Rating
0.0 stars

How can you tell if harmful bacteria are in your food or water that might make you sick? What you eat or drink can be contaminated with bacteria, viruses, parasites and toxins—pathogens that can be harmful or even fatal. Students learn which contaminants have the greatest health risks and how they enter the food supply. While food supply contaminants can be identified from cultures grown in labs, bioengineers are creating technologies to make the detection of contaminated food quicker, easier and more effective.

Subject:
Career and Technical Education
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Evangelyn Alocilja
Hannah Miller
Lisa Wininger
Date Added:
02/17/2017
Catching lung cancer early using only a sample of blood
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Lung cancer is the number one cause of cancer-related death Early detection is key to beating the disease A lung tumour that’s detected early, before it grows too large or spreads to other parts of the body, can be removed by surgeons and essentially cured The problem is that early detection is tricky Most patients don’t develop symptoms until advanced disease has set in, and the most common screening methods can be expensive and impractical Scientists are working on a new blood test that could help The test can spot small bits of DNA floating around in the blood Cancer cells shed this DNA as they grow and multiply Preliminary tests in mice showed the test can detect lung tumours before they become malignant The amount of tumour DNA found in the blood went up as tumours grew, giving scientists an idea of how large a mass had become More work is needed before the test can be used to detect cancer in humans But the research suggests that spotting early-stage lung cancer may one day be.."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019
Electronic Instrumentation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a basic course on Instrumentation and Measurement. Firstly, the detection limit in a typical instrument for measurement of an electrical quantity is determined for: offset, finite common-mode rejection, noise and interference. The dominant source of uncertainty is identified and the equivalent input voltage/current sources are calculated. Secondly, the measurement of a non-electrical quantity is discussed. In this case the detection limit should be expressed in terms of the non-electrical input parameter of interest. Issues discussed are: (cross-)sensitivities in frequently used transduction effects, non-electrical source loading and noise in the non-electrical signal domain. Coupled domain formal modeling is subsequently introduced to facilitate analytical multi-domain system analysis. Finally, the detection limit in typical applications in the mechanical, thermal, optical and magnetic signal domain are analysed, along with circuit and system techniques to maximize overall system detectivity.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
K.A.A. Makinwa
Date Added:
02/08/2016
Exploring Nondestructive Evaluation Methods
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its series of hands-on mini-activities, students answer the question: How can we investigate and measure the inside of an object or its structure if we cannot take it apart? Unlike the destructive nuclear weapon test (!), nondestructive evaluation (NDE) methods are able to accomplish this. After an introductory slide presentation, small groups rotate through five mini-activity stations: 1) applying Maxwell’s equations, 2) generating currents, 3) creating magnetic fields, 4) solving a system of equations, and 5) understanding why the finite element method (FEM) is important. Through the short experiments, students become familiar with the science and physics being used and make the mathematical connections. They explore components of NDE and see how engineers find unseen flaws and cracks in materials that make aircraft. A pre/post quiz, slide presentation and worksheet are included.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Measurement and Data
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Anton Efremov
Marianne Livezey
Oleksii Karpenko
Date Added:
11/01/2017
Information Security
Unrestricted Use
CC BY
Rating
0.0 stars

This course focuses on the fundamentals of information security that are used in protecting both the information present in computer storage as well as information traveling over computer networks. Upon successful completion of this course, the student will be able to: explain the challenges and scope of information security; explain such basic security concepts as confidentiality, integrity, and availability, which are used frequently in the field of information security; explain the importance of cryptographic algorithms used in information security in the context of the overall information technology (IT) industry; identify and explain symmetric algorithms for encryption-based security of information; identify and explain public key-based asymmetric algorithms for encryption-based security of information; describe the access control mechanism used for user authentication and authorization; describe Secure Sockets Layer (SSL) as a common solution enabling security of many applications, including all Internet-based commerce; describe securing Internet Protocol (IP) communications by using Internet Protocol Security (IPSec); explain the importance of physical security and discuss ways to improve physical security of an enterprise; explain the use of such security tools as firewalls and intrusion prevention systems; explain malicious software issues, such as those brought forth by software-based viruses and worms; explain common software security issues, such as buffer overflow; describe the basic process of risk assessment in the context of overall IT security management. (Computer Science 406)

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Much ado about nothing? False positive brain microbiome detection in Parkinson’s disease
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Although the brain has always been viewed as a sterile organ, recent studies have suggested the existence of a ‘brain microbiome,’ perturbations of which could cause neuroinflammatory conditions. Unfortunately, experiments aimed at detecting a brain microbiome are limited by a low bacterial biomass. Bacteria must be detected through an overwhelming amount of host DNA, and the low biomass additionally raises the risk of amplifying exogenous contaminants. A recent study tested the hypothesis that there is a bacterial brain microbiome. Using 16S rRNA sequencing, researchers evaluated brain samples from healthy individuals and individuals suffering from Parkinson’s disease (PD), along with murine brains. They found that while amplicon sequencing detected bacterial signals in both human and murine brains, the estimated bacterial biomass was extremely low. Careful reanalysis suggested that bacterial signals were explained by exogenous DNA contamination and false-positive amplification of host DNA..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/15/2021
Nanotechnology and Cancer Treatments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the biomedical use of nanoparticles in the detection and treatment of cancer, including the use of quantum dots and lasers that heat-activate nanoparticles. They also learn about electrophoresis a laboratory procedure that uses an electric field to move tiny particles through a channel in order to separate them by size. They complete an online virtual mini-lab, with accompanying worksheet, to better understand gel electrophoresis. This prepares them for the associated activity to write draft research proposals to use nanoparticles to protect against, detect or treat skin cancer.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Optical Signals, Devices, and Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.637 covers the fundamentals of optical signals and modern optical devices and systems from a practical point of view. Its goal is to help students develop a thorough understanding of the underlying physical principles such that device and system design and performance can be predicted, analyzed, and understood.
Most optical systems involve the use of one or more of the following: sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays). These are the topics covered by this course.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Warde, Cardinal
Date Added:
02/01/2003
Principles of Digital Communication I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451 Principles of Digital Communication II, is offered in the spring.
Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Feizi-Khankandi, Soheil
Médard, Muriel
Date Added:
09/01/2009
Principles of Digital Communications I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451, is offered in the spring.
Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Gallager, Robert
Zheng, Lizhong
Date Added:
09/01/2006
Receivers, Antennas, and Signals
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Staelin, David
Date Added:
02/01/2003
Stochastic Processes, Detection, and Estimation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines the fundamentals of detection and estimation for signal processing, communications, and control. Topics covered include: vector spaces of random variables; Bayesian and Neyman-Pearson hypothesis testing; Bayesian and nonrandom parameter estimation; minimum-variance unbiased estimators and the Cramer-Rao bounds; representations for stochastic processes, shaping and whitening filters, and Karhunen-Loeve expansions; and detection and estimation from waveform observations. Advanced topics include: linear prediction and spectral estimation, and Wiener and Kalman filters.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Willsky, Alan
Wornell, Gregory
Date Added:
02/01/2004
Who's Hitchhiking in Your Food?
Read the Fine Print
Educational Use
Rating
0.0 stars

How can you tell if harmful bacteria are growing in your food? Students learn to culture bacteria in order to examine ground meat and bagged salad samples, looking for common foodborne bacteria such as E. coli or salmonella. After 2-7 days of incubation, they observe and identify the resulting bacteria. Based on their first-hand experiences conducting this conventional biological culturing process, they consider its suitability in meeting society's need for ongoing detection of harmful bacteria in its food supply, leading them to see the need for bioengineering inventions for rapid response bio-detection systems.

Subject:
Career and Technical Education
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Evangelyn Alocilja
Hannah Miller
Lisa Wininger
Date Added:
02/17/2017