Updating search results...

Search Resources

7 Results

View
Selected filters:
  • capacitance
Capacitor Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Explore how a capacitor works! Change the size of the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. Shows the electric field in the capacitor. Measure voltage and electric field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Mike Dubson
Noah Podolefsky
Date Added:
09/30/2011
Circuit Construction Kit (AC+DC)
Unrestricted Use
CC BY
Rating
0.0 stars

This new version of the CCK adds capacitors, inductors and AC voltage sources to your toolbox! Now you can graph the current and voltage as a function of time.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Date Added:
07/12/2008
Circuit Construction Kit (AC+DC), Virtual Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments such as voltmeters and ammeters.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Sam Reid
Date Added:
07/01/2006
Circuits
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to several key concepts of electronic circuits. They learn about some of the physics behind circuits, the key components in a circuit and their pervasiveness in our homes and everyday lives. Students learn about Ohm's Law and how it is used to analyze circuits.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
09/18/2014
Fighting climate change with faster electronics
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Left unchecked, excessive CO₂ emissions have the potential to significantly warm the planet in the coming decades. One way to curb this trend is to develop more efficient power electronics, which can channel electricity from clean energy sources to the global grid, with minimal energy losses. A new study reports one device that could help make this clean future a reality. Losses in traditional power electronics can be traced to the relatively sluggish movement of the charge carriers that carry current through them. That translates to slow switching speeds and overall inefficient device performance. This new device takes advantage of a phenomenon called bulk conduction, where charge carriers are generated (in this case, with light) and controlled nearly simultaneously throughout the device. Results showed that the device, made from silicon carbide, could perform 6 times faster than existing solid-state devices. That speed improvement alone could help reduce global CO₂ emissions by more than 10%..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Engineering
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/16/2021
Physics II: Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory.
Acknowledgments
Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Physics Department affiliated with course 8.022. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sciolla, Gabriella
Date Added:
09/01/2004