Updating search results...

Search Resources

16 Results

View
Selected filters:
  • atomic-physics
Balancing Chemical Equations
Unrestricted Use
CC BY
Rating
0.0 stars

How do you know if a chemical equation is balanced? What can you change to balance an equation? Play a game to test your ideas!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
08/15/2011
Build a Molecule
Unrestricted Use
CC BY
Rating
0.0 stars

Starting from atoms, see how many molecules you can build. Collect your molecules and see them in 3D!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Christine Denison
Emily Moore
John Blanco
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Sam Reid
Date Added:
06/27/2011
Build an Atom
Unrestricted Use
CC BY
Rating
0.0 stars

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
John Blanco
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Sam Reid
Suzanne Brahmia
Date Added:
07/13/2011
Concord Consortium: Atomic Structure
Read the Fine Print
Rating
0.0 stars

This interactive, scaffolded activity allows students to build an atom within the framework of a newer orbital model. It opens with an explanation of why the Bohr model is incorrect and provides an analogy for understanding orbitals that is simple enough for grades 8-9. As the activity progresses, students build atoms and ions by adding or removing protons, electrons, and neutrons. As changes are made, the model displays the atomic number, net charge, and isotope symbol. Try the "Add an Electron" page to build electrons around a boron nucleus and see how electrons align from lower-to-higher energy. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering. The models are all freely accessible. Users may register for additional free access to capture data and store student work products.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/06/2011
Concord Consortium: Chemical Bonds
Read the Fine Print
Rating
0.0 stars

This interactive activity helps learners visualize the role of electrons in the formation of ionic and covalent chemical bonds. Students explore different types of chemical bonds by first viewing a single hydrogen atom in an electric field model. Next, students use sliders to change the electronegativity between two atoms -- a model to help them understand why some atoms are attracted. Finally, students experiment in making their own models: non-polar covalent, polar covalent, and ionic bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Electric Current
Read the Fine Print
Rating
0.0 stars

This 90-minute activity features six interactive molecular models to explore the relationships among voltage, current, and resistance. Students start at the atomic level to explore how voltage and resistance affect the flow of electrons. Next, they use a model to investigate how temperature can affect conductivity and resistivity. Finally, they explore how electricity can be converted to other forms of energy. The activity was developed for introductory physics courses, but the first half could be appropriate for physical science and Physics First. The formula for Ohm's Law is introduced, but calculations are not required. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Chemistry
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
03/10/2013
Concord Consortium: Excited States and Photons
Read the Fine Print
Rating
0.0 stars

This concept-building activity contains a set of sequenced simulations for investigating how atoms can be excited to give off radiation (photons). Students explore 3-dimensional models to learn about the nature of photons as "wave packets" of light, how photons are emitted, and the connection between an atom's electron configuration and how it absorbs light. Registered users are able to use free data capture tools to take snapshots, drag thumbnails, and submit responses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/21/2012
Concord Consortium: Making and Breaking Bonds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners explore factors that cause atoms to form (or break) bonds with each other. The first simulation depicts a box containing 12 identical atoms. Using a slider to add heat, students can see the influence of temperature on formation of diatomic bonds. Simulations #2 and #3 introduce learners to reactions involving two types of atoms. Which atom forms a diatomic molecule more easily, and why? The activity concludes as students explore paired atoms (molecules). In this simulation they compare the amount of energy needed to break the molecular bonds to the energy needed to form the bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Probability Clouds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners build computer models of atoms by adding or removing electrons, protons, and neutrons. It presents the orbital model of an atom: a nucleus consisting of protons and neutrons with electrons surrounding it in regions of high probability called orbitals. Guided tasks are provided, such as constructing a lithium atom and a carbon-12 atom in the fewest possible steps. The activity concludes with a model for building a charged hydrogen atom (an ion). Within each task, students take snapshots of their work product and answer probative questions. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/17/2011
Electrostatics
Read the Fine Print
Rating
0.0 stars

Use a series of interactive models and games to explore electrostatics. Learn about the effects positive and negative charges have on one another, and investigate these effects further through games. Learn about Coulomb's law and the concept that both the distance between the charges and the difference in the charges affect the strength of the force. Explore polarization at an atomic level, and learn how a material that does not hold any net charge can be attracted to a charged object. Students will be able to:

Subject:
Applied Science
Chemistry
Education
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Game
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
An Interactive Study: Laws of Conservation of Mass and Definite Proportions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity seeks to have students model the process of science by recording quantitative and qualitative attributes of reactants and products in three separate experiments with the purpose of examining the relationship between the original reactant(s) to the final product(s). Students record the mass and volume of reactants and products and independently calculate mathematical relationships between the reactant(s) and product(s). They also record their observations of any physical changes that occur.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Sandra Swenson
Date Added:
11/06/2014
Models of the Hydrogen Atom
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this interactive lecture, models of the hydrogen atom are explored using an online Java applet. The exploration leads to qualitative and quantitative analysis of energy transitions.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Steven Maier
Date Added:
11/06/2014
Neon Lights & Other Discharge Lamps
Unrestricted Use
CC BY
Rating
0.0 stars

Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/13/2006
Proton Neutron Rotation and Nuclear Stability
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this physics activity, students will review and investigate stability of the nucleus of various elements. They will then determine factors that affect the stability of the nucleus.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Jerry Soost
Date Added:
12/13/2011
Rutherford's Model of the Atom
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students are asked think-pair-share questions to predict the interaction of alpha particles fired toward the nucleus of an atom. An online applet is used to illustrate the interaction and test students' ideas for the causes of the interaction. This activity uses a resource in the comPADRE partner collection.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Steven Maier
Date Added:
11/06/2014
Tree of Life
Read the Fine Print
Rating
0.0 stars

All cells, organs and tissues of a living organism are built of molecules. Some of them are small, made from only a few atoms. There is, however, a special class of molecules that make up and play critical roles in living cells. These molecules can consist of many thousands to millions of atoms. They are referred to as macromolecules (or large biomolecules).

Subject:
Biology
Chemistry
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Interactive
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/18/2011