Updating search results...

Search Resources

21 Results

View
Selected filters:
  • angular-momentum
Angular momentum
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introducing angular momentum conceptually starting from linear momentum. Also covers some real-life examples. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
07/02/2021
Ball hits rod angular momentum example
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

David explains how a mass can have angular momentum even if it is traveling along a straight line. Then David shows how to solve the conservation of angular momentum problem where a ball hits a rod which can rotate. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
07/02/2021
Electronic, Optical and Magnetic Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Anikeeva, Polina
Beach, Geoffrey
Holten-Andersen, Niels
Date Added:
02/01/2013
Introductory Quantum Mechanics I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

5.73 covers fundamental concepts of quantum mechanics: wave properties, uncertainty principles, Schrödinger equation, and operator and matrix methods. Basic applications of the following are discussed: one-dimensional potentials (harmonic oscillator), three-dimensional centrosymmetric potentials (hydrogen atom), and angular momentum and spin. The course also examines approximation methods: variational principle and perturbation theory.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Van Voorhis, Troy
Date Added:
09/01/2005
Ladybug Revolution
Unrestricted Use
CC BY
Rating
0.0 stars

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
10/28/2008
Mid-Air Maneuver
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

To understand how skaters turn in midair, try this little experiment! Individuals can do this activity alone, but it works better with a partner. Used in conjuncture with the rest of the Exploratorium's Skateboard Science website, this activity and others explore the physics of skateboard tricks.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
Exploratorium
The Exploratorium
Date Added:
10/31/2012
Physics I: Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Burgasser, Adam
Date Added:
09/01/2008
Physics I: Classical Mechanics with an Experimental Focus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton's laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dourmashkin, Peter
Scholberg, Kate
Date Added:
09/01/2002
The Physics of Boomerangs
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video explores the mysterious physics behind boomerangs and other rapidly spinning objects. Students will get to make and throw their own boomerangs between video segments! A key idea presented is how torque causes the precession of angular momentum. One class period is required to complete this learning video, and the optimal prerequisites are a familiarity with forces, Newton's laws, vectors and time derivatives. Each student would need the following materials for boomerang construction: cardboard (roughly the size of a postcard), ruler, pencil/pen, scissors, protractor, and a stapler.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Zhiming Darren Tan
Date Added:
06/08/2015
Quantum Physics II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Together, this course and 8.06 Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, quantum mechanics in three-dimensions, angular momentum, spin, and addition of angular momentum. The lectures and lecture notes for this course form the basis of Zwiebach’s textbook Mastering Quantum Mechanics published by MIT Press in April 2022.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Zwiebach, Barton
Date Added:
09/01/2013
Ring around the Rosie
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the concept of angular momentum and its correlation to mass, velocity and radius. They experiment with rotation and an object's mass distribution. In an associated literacy activity, students use basic methods of comparative mythology to consider why spinning and weaving are common motifs in creation myths and folktales.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
Small-Molecule Spectroscopy and Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.

Subject:
Applied Science
Chemistry
Health, Medicine and Nursing
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Field, Robert
Date Added:
09/01/2008
Super Spinners!
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this hands-on activity to demonstrate rotational inertia, rotational speed, angular momentum, and velocity. Students build at least two simple spinners to conduct experiments with different mass distributions and shapes, as they strive to design and build the spinner that spins the longest.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Swing in Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the motion of pendulums and come to understand that the longer the string of the pendulum, the fewer the number of swings in a given time interval. They see that changing the weight on the pendulum does not have an effect on the period. They also observe that changing the angle of release of the pendulum has negligible effect upon the period.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Swinging on a String
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how pendulums work and why they are useful in everyday applications. In a hands-on activity, they experiment with string length, pendulum weight and angle of release. In an associated literacy activity, students explore the mechanical concept of rhythm, based on the principle of oscillation, in a broader biological and cultural context in dance and sports, poetry and other literary forms, and communication in general.

Subject:
Applied Science
Engineering
History
History, Law, Politics
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
Torque
Unrestricted Use
CC BY
Rating
0.0 stars

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of inertia, angular momentum and torque.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
02/01/2008
Torque (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of inertia, angular momentum and torque.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
02/02/2012