Updating search results...

Search Resources

7 Results

View
Selected filters:
  • amplifiers
Circuits and Electronics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.
The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.
The course uses the required textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Agarwal, Anant
Date Added:
02/01/2007
Electronic Instrumentation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a basic course on Instrumentation and Measurement. Firstly, the detection limit in a typical instrument for measurement of an electrical quantity is determined for: offset, finite common-mode rejection, noise and interference. The dominant source of uncertainty is identified and the equivalent input voltage/current sources are calculated. Secondly, the measurement of a non-electrical quantity is discussed. In this case the detection limit should be expressed in terms of the non-electrical input parameter of interest. Issues discussed are: (cross-)sensitivities in frequently used transduction effects, non-electrical source loading and noise in the non-electrical signal domain. Coupled domain formal modeling is subsequently introduced to facilitate analytical multi-domain system analysis. Finally, the detection limit in typical applications in the mechanical, thermal, optical and magnetic signal domain are analysed, along with circuit and system techniques to maximize overall system detectivity.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
K.A.A. Makinwa
Date Added:
02/08/2016
Fundamentals of Microwave and RF Design
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The book series Microwave and RF Design is a comprehensive treatment of radio frequency (RF) and microwave design with a modern “systems-first” approach. A strong emphasis on design permeates the series with extensive case studies and design examples. Design is oriented towards cellular communications and microstrip design so that lessons learned can be applied to real-world design tasks. The books in the Microwave and RF Design series are: Radio Systems (Volume 1), Transmission Lines (Volume 2), Networks (Volume 3), Modules (Volume 4), and Amplifiers and Oscillators (Volume 5).

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
North Carolina State University
Author:
Michael Steer
Date Added:
08/29/2019
High Speed Communication Circuits
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.776 covers circuit level design issues of high speed communication systems, with primary focus being placed on wireless and broadband data link applications. Specific circuit topics include transmission lines, high speed and low noise amplifiers, VCO's, mixers, power amps, high speed digital circuits, and frequency synthesizers. In addition to learning analysis skills for the above items, students will gain a significant amount of experience in simulating RF circuits in SPICE and also building RF circuits within a lab project.

Subject:
Applied Science
Career and Technical Education
Computer Science
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lee, Hae-Seung
Perrott, Michael
Date Added:
02/01/2005
Introduction to Neural Networks
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the organization of synaptic connectivity as the basis of neural computation and learning. Perceptrons and dynamical theories of recurrent networks including amplifiers, attractors, and hybrid computation are covered. Additional topics include backpropagation and Hebbian learning, as well as models of perception, motor control, memory, and neural development.

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Seung, Sebastian
Date Added:
02/01/2005
Operational Amplifiers & Linear Integrated Circuits: Theory and Application / 3E
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of this text, as its name implies, is to allow the reader to become proficient in the analysis and design of circuits utilizing modern linear ICs. It progresses from the fundamental circuit building blocks through to analog/digital conversion systems. The text is intended for use in a second year Operational Amplifiers course at the Associate level, or for a junior level course at the Baccalaureate level. In order to make effective use of this text, students should have already taken a course in basic discrete transistor circuits, and have a solid background in algebra and trigonometry, along with exposure to phasors. Calculus is used in certain sections of the text, but for the most part, its use is kept to a minimum. For students without a calculus background, these sections may be skipped without a loss of continuity. (The sole exception to this being Chapter Ten, Integrators and Differentiators, which hinges upon knowledge of calculus.)

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Dissidents
Author:
James M. Fiore
Date Added:
11/20/2019
Radio Systems Engineering, Revised First Edition
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Using a systems framework, this textbook provides a clear and comprehensive introduction to the performance, analysis, and design of radio systems for students and practicing engineers. Presented within a consistent framework, the first part of the book describes the fundamentals of the subject: propagation, noise, antennas, and modulation. The analysis and design of radios including RF circuit design and signal processing is covered in the second half of the book.

Key features
- Numerous examples within the text involve realistic analysis and design activities, and emphasize how practical experiences may differ from theory or taught procedures.
- RF circuit design and analysis is presented with minimal involvement of Smith charts, enabling students to more readily grasp the fundamentals.
- Both traditional and software-defined/direct sampling technology are described with pros and cons of each strategy explained.
- 517 pages. Licensed CC BY NC 4.0.

"This textbook gives engineering students a complete overview of radio systems and provides practicing wireless engineers with a convenient comprehensive reference."
- Patrick Roblin, Ohio State University

Radio Systems Engineering, Revised First Edition was previously published by Cambridge University Press (2016) ISBN 9781107068285. This version is © Steven W. Ellingson and has been lightly updated to correct known errata, minor issues with text and figures, and to present examples in color highlight boxes and some figures in color. It is made freely available and under a Creative Commons Attribution NonCommercial International License (CC BY NC 4.0).

Are you reviewing or adopting this book for a course?
Please help us understand your use by filling out this form: https://bit.ly/interest_radiosystemsengineering_revised1st
Join the instructor group (https://oercommons.org/groups/radio-systems-engineering-instructor-group/14443/) to connect with other instructors interested in this resource.

How to access the book
The main landing page for this book is https://doi.org/10.21061/radiosystemsengineering-revised1st.
The open textbook is freely available online in multiple formats including PDF and HTML [forthcoming].
A paperback print version (in color) is available for order here: https://www.amazon.com/Radio-Systems-Engineering-Revised-First/dp/1957213752

ISBNs
ISBN (PDF): 978-1-957213-76-7
ISBN (HTML): 978-1-957213-77-4 (accessible version forthcoming)
ISBN (print): 978-1-957213-75-0

Table of contents
Chapter 1: Introduction
Chapter 2: Antenna Fundamentals
Chapter 3: Propagation
Chapter 4: Noise
Chapter 5: Analog Modulation
Chapter 6: Digital Modulation
Chapter 7: Radio Link Analysis
Chapter 8: Two-Port Concepts
Chapter 9: Impedance Matching
Chapter 10: Amplifiers
Chapter 11: Linearity, Multistage Analysis, and Dynamic Range
Chapter 12: Antenna Integration
Chapter 13: Analog Filters & Multiplexers
Chapter 14: Frequency and Quadrature Conversion in the Analog Domain
Chapter 15: Receivers
Chapter 16: Frequency Synthesis
Chapter 17: Transmitters
Chapter 18: Digital Implementation of Radio Functions
Appendix A: Empirical Modeling of Mean Path Loss
Appendix B: Characteristics of Some Common Radio Systems

About the author
Dr. Steven W. Ellingson
Steven W. Ellingson is an Associate Professor of Electrical & Computer Engineering at Virginia Tech. He received the Ph.D. degree in Electrical Engineering from the Ohio State University. He held senior engineering positions at Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech. His research is in the areas of antennas and propagation, applied signal processing, and radio frequency instrumentation, with funding from the U.S. National Science Foundation, National Aeronautics and Space Administration, the Defense Advanced Research Projects Agency, and the commercial communications and aerospace industries. Dr. Ellingson serves as a consultant to industry and government on topics pertaining to radio frequency systems.

Suggested citation
Ellingson, Steven W. (2023). Radio Systems Engineering, Revised First Edition. Blacksburg. https://doi.org/10.21061/radiosystemsengineering-revised1st. Licensed with CC BY NC 4.0.

View Errata: https://bit.ly/errata_radiosystemsengineering_revised1st
Report an Error: https://bit.ly/reporterror_radiosystemsengineering_revised1st

Accessibility
Virginia Tech is committed to making its publications accessible in accordance with the Americans with Disabilities Act of 1990.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
01/18/2024