Updating search results...

Search Resources

3 Results

View
Selected filters:
  • activation
AKT inactivation mediated by a ‘PP2A switch’ after GqPCR activation
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Gq protein-coupled receptors (GqPCRs) are membrane bound proteins that transmit signals from outside the cell to internal signaling pathways. One of these pathways is the PI3K/AKT pathway, which plays roles in cellular proliferation, survival, metabolism, and differentiation. PI3K/AKT dysregulation is also often implicated in cancers. A previous study determined that activating GqPCRs in certain cells inactivated AKT, which led to a specific type of cell death, JNK-dependent apoptosis. This unique signal seems to play an important role in physiological and pathological events like pituitary development and cardiac hypertrophy. Now, a new study determined that the mechanism of this AKT inactivation relies on another signaling-related protein, PP2A. When the GqPCRs are not activated, a fraction of PP2A "c" subunit is in a dimer complex with another protein, IGBP1 and they are bound to the p85 subunit of PI3K, causing its activation..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
01/11/2022
Architectural Design, Level III: A Student Center for MIT
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This studio will investigate the social, programmatic, tectonic and phenomenological performance and character of a student gathering place on the MIT campus. Whether it is simply for socializing or for more specific events, the student gathering place will serve as a refuge from the vigorous educational environment of the Institute, and it will reinforce a critical sense of "place" through the almost logical organization of its program. The place will foster a casual discovery of "being": a reflection upon the student's own existence based upon participation in group events and an intellectual attitude toward acting. To create a space that inspires, rather than imposes: such a discovery is the foremost challenge of this studio.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Domeyko, Fernando
Date Added:
09/01/2004
Dangerous triad: KRAS, MYC, and ARF6 cooperatively promote cancer malignancy and immune invasion
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Cancer cells are abnormal cells that rapidly proliferate and often find ways to evade the immune system’s attempts to stop them. Such cells often overexpress the genes MYC and ARF6 and have a mutated version of the KRAS gene. These changes are inextricably linked and result in significant resistance to cancer therapies. KRAS activates MYC gene expression and possibly promotes the translation of the messenger RNA for both MYC and ARF6. Then MYC induces expression of genes related to mitochondrial formation and energy production. Meanwhile, ARF6 protects the mitochondria from oxidation-induced injury. ARF6 may also promote cancer invasion, metastasis, and immune evasion. Thus, KRAS, MYC, and ARF6 cooperate to help cancer spread and to avoid the immune system and immune-based treatments. These harmful associations are common in pancreatic cancer and can be strengthened by mutations in other genes like TP53..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/15/2023